Unexpected Role for Dosage Compensation in the Control of Dauer Arrest, Insulin-Like Signaling, and FoxO Transcription Factor Activity in Caenorhabditis elegans

نویسندگان

  • Kathleen J. Dumas
  • Colin E. Delaney
  • Stephane Flibotte
  • Donald G. Moerman
  • Gyorgyi Csankovszki
  • Patrick J. Hu
چکیده

During embryogenesis, an essential process known as dosage compensation is initiated to equalize gene expression from sex chromosomes. Although much is known about how dosage compensation is established, the consequences of modulating the stability of dosage compensation postembryonically are not known. Here we define a role for the Caenorhabditis elegans dosage compensation complex (DCC) in the regulation of DAF-2 insulin-like signaling. In a screen for dauer regulatory genes that control the activity of the FoxO transcription factor DAF-16, we isolated three mutant alleles of dpy-21, which encodes a conserved DCC component. Knockdown of multiple DCC components in hermaphrodite and male animals indicates that the dauer suppression phenotype of dpy-21 mutants is due to a defect in dosage compensation per se. In dpy-21 mutants, expression of several X-linked genes that promote dauer bypass is elevated, including four genes encoding components of the DAF-2 insulin-like pathway that antagonize DAF-16/FoxO activity. Accordingly, dpy-21 mutation reduced the expression of DAF-16/FoxO target genes by promoting the exclusion of DAF-16/FoxO from nuclei. Thus, dosage compensation enhances dauer arrest by repressing X-linked genes that promote reproductive development through the inhibition of DAF-16/FoxO nuclear translocation. This work is the first to establish a specific postembryonic function for dosage compensation in any organism. The influence of dosage compensation on dauer arrest, a larval developmental fate governed by the integration of multiple environmental inputs and signaling outputs, suggests that the dosage compensation machinery may respond to external cues by modulating signaling pathways through chromosome-wide regulation of gene expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A histone H4 lysine 20 methyltransferase couples environmental cues to sensory neuron control of developmental plasticity

Animals change developmental fates in response to external cues. In the nematode Caenorhabditis elegans, unfavorable environmental conditions induce a state of diapause known as dauer by inhibiting the conserved DAF-2 insulin-like signaling (ILS) pathway through incompletely understood mechanisms. We have previously established a role for the C. elegans dosage compensation protein DPY-21 in the...

متن کامل

Caenorhabditis elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity.

Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that mo...

متن کامل

Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor.

A neurosecretory pathway regulates a reversible developmental arrest and metabolic shift at the Caenorhabditis elegans dauer larval stage. Defects in an insulin-like signaling pathway cause arrest at the dauer stage. We show here that two C. elegans Akt/PKB homologs, akt-1 and akt-2, transduce insulin receptor-like signals that inhibit dauer arrest and that AKT-1 and AKT-2 signaling are indispe...

متن کامل

Insulin/Insulin-like growth factor signaling controls non-Dauer developmental speed in the nematode Caenorhabditis elegans.

Identified as a major pathway controlling entry in the facultative dauer diapause stage, the DAF-2/Insulin receptor (InsR) signaling acts in multiple developmental and physiological regulation events in Caenorhabditis elegans. Here we identified a role of the insulin-like pathway in controlling developmental speed during the C. elegans second larval stage. This role relies on the canonical DAF-...

متن کامل

daf-31 Encodes the Catalytic Subunit of N Alpha-Acetyltransferase that Regulates Caenorhabditis elegans Development, Metabolism and Adult Lifespan

The Caenorhabditis elegans dauer larva is a facultative state of diapause. Mutations affecting dauer signal transduction and morphogenesis have been reported. Of these, most that result in constitutive formation of dauer larvae are temperature-sensitive (ts). The daf-31 mutant was isolated in genetic screens looking for novel and underrepresented classes of mutants that form dauer and dauer-lik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 194  شماره 

صفحات  -

تاریخ انتشار 2013